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PARAMETRIC LINEAR FRACTIONAL PROGRAMMING 

Abstract. This paper considers a mathematical programming problem whose 

objective function is a linear fractional. The constraint set consists of linear 

inequalities with non-negative requirements on the variables. A parameter is 

introduced in the objective function of the problem. Optimum solutions are obtained 

for the various intervals of the parameter. A numerical example illustrates the steps of 

the proposed algorithm. 
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1. Introduction 

Development of parametric optimization tools are essential in the process design as 

they can offer significant analytical results to problems related to uncertainty objective 

optimization. In fact, the solution of the pertinent parametric optimization problems is 

the complete and exact solution from the mathematical point of view. 

   Although sensitivity analysis and parametric optimization problems have been 

addressed successfully in the linear programming case (Gal, 1979) they are still the 

subject of ongoing research for non-linear mathematical programming problems.(Gass, 

1985) has very lucidly dealt with the parametric optimization in the case of   linear 

programming problems;(Murty, 1980) has studied the computational complexity of 

parametric linear programming problems.( Singh et.al., 2011) have considered a 

multiparametric problem for a generalized transportation problem. 

(Mordukhorichet.al., 2009) have studied sub-gradients of marginal functions in 

parametric mathematical programming.(Aggarwal, 1968)  has studied  a linear 

fractional programming when the parameter appears in a very special structured 

objective function of the problem.  

This paper addresses the behavior of solutions to a linear fractional programming 

problem when the coefficients of the objective function, in its most general form, are 

allowed to vary; i.e., for what ranges of coefficient values will the deterministic 
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solution remain optimal? In general, a parametric linear fractional programming 

problem can be stated as: 

let 𝜔 ≤ 𝜇 ≤ 𝜑, where 𝜔 may be an arbitrary small, but finite number and 𝜑 may be an 

arbitrary, algebraically large, but finite number. For each 𝜇 in this interval, find a 

vector x = ( 𝑥1, 𝑥2, … , 𝑥𝑛) which maximizes 

Z = 
∑  [𝑐𝑗+𝜇𝑐 ′

𝑗] 𝑥𝑗
𝑛
𝑗=1

∑ [𝑑𝑗
𝑛
𝑗=1 +𝜇𝑑′

𝑗]𝑥𝑗
 

subject to 

∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖
𝑛
𝑗=1                i = 1,…,m     ( 1) 

𝑥𝑗 ≥ 0                 j = 1,…,n 

where 𝑐𝑗, 𝑐𝑗
′  ,𝑑𝑗, 𝑑𝑗

′  ,𝑎𝑖𝑗 , and 𝑏𝑖 are given constants. 

In matrix form above is same as: 

Z =
[𝒄+ 𝜇𝒄′ ] 𝒙

[𝒅+𝜇𝒅′ ] 𝒙
 

subject to 

𝒙 ∈ 𝑆. 

Here 𝑆 = ( 𝑨𝒙 ≤ 𝒃, 𝒙 ≥ 𝟎); 𝑨 =  (𝑨𝟏, 𝑨𝟐. , … 𝑨𝒏) is m by n matrix;𝒄, 𝒄′, 𝒅, 𝒅′are n-

component row vectors, 𝒙 and 𝒃 are n and m components column vectors respectively.  

(Aggarwal, 1968) has studied three special cases of problem (1). In case one the 

objective function of the problem is: 

∑  [𝑐𝑗+𝜇𝑐 ′
𝑗] 𝑥𝑗

𝑛
𝑗=1

∑    [𝑑𝑗
𝑛
𝑗=1 +𝜇𝑐 ′

𝑗] 𝑥𝑗
 ; 

in the second case objective function is: 

∑  [𝑐𝑗+𝜇𝑐 ′
𝑗] 𝑥𝑗

𝑛
𝑗=1

∑ 𝑑𝑗
𝑛
𝑗=1 𝑥𝑗

 ; 

the objective function in the last case is: 
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∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1

∑ [𝑑𝑗
𝑛
𝑗=1 + 𝜇𝑑′

𝑗] 𝑥𝑗
 

(Chadha, 1971) has studied the above three cases in a linear fractional programming 

problem when two parameters appear in the objective function. The intention here is to 

study the parametric linear fractional programming in its most general form as in (1). 

Preliminaries are given in section 2; the algorithm, in detail, is presented in section 3; 

the last section of the paper contains a numerical example.  This example illustrates all 

the steps of the proposed algorithm.. 

2. Preliminaries 

A linear fractional programming problem is given by 

 

Maximize 𝐹(𝑥) =
𝑪𝒙   

𝑫𝒙
          (2) 

subject to                                                                    

𝒙 ∈ 𝑆. 

Here 𝑆 = ( 𝑨𝒙 ≤ 𝒃, 𝒙 ≥ 𝟎); 𝑨 =  (𝑨𝟏, 𝑨𝟐, … 𝑨𝒏) is m by n matrix; 𝑪, 𝑫 are n-

component row vectors, 𝒙 and 𝒃 are n and m components column vectors respectively. 

Under the assumptions that the 

    (i)   set S is regular, i.e. non-empty and bounded, 

    (ii)  𝑫𝒙 > 0for all 𝒙𝑖𝑛 ∈ 𝑆, 
   and (iii) the problem is non-degenerate, 

 

it has been proved by (Martos, 1964)and (Swarup, 1965) that a basic feasible solution, 

𝒙𝟎 = (𝒙𝑩, 𝟎) solves the problem (2) if 

 

∆𝑗= 𝑍2 [𝑪𝑩𝑷𝒋 − 𝑐𝑗] − 𝑍1[𝑫𝑩𝑷𝒋 − 𝑑𝑗] ≥ 0  ;     j = 1, 2,…, n.    (3) 

 

Here 𝑐𝑗,  and 𝑑𝑗are the jth-elements of the vectors 𝑪 and 𝑫 respectively; 𝑪𝑩, and𝑫𝑩are 

the sub-vectors of C, and D respectively. Corresponding to the basis matrix𝑩of𝑨; 𝑷𝒋 =

𝑩−𝟏𝑨𝒋, 𝒙𝑩 =  𝑩−𝟏𝒃,  𝑍2 = 𝑫𝑩𝒙𝑩, and 𝑍1 = 𝑪𝑩𝒙𝑩.  

3. Description of the algorithm 



 
 
 
 
 
S.S. Chadha, Veena Chadha 

___________________________________________________________________ 

106 

 

We start with a basic feasible solution, 𝒙𝟎 = ( 𝒙𝑩, 𝟎 ) for problem (1),with𝑨 ≡ [𝑩, 𝑵]. 
Next we calculate ∆′𝑗𝑠 associated with this basic feasible solution for all𝑗𝑖𝑛𝑵.  

∆𝑗 = (𝒅𝑩 +  𝜇𝒅𝑩
′ )𝒙𝑩 [(𝒄𝑩 + 𝜇𝒄𝑩

′ )𝑩−𝟏𝑨𝒋 − (𝑐𝑗 +  𝜇𝑐𝑗
′)] − 

(𝒄𝑩 +  𝜇𝒄𝑩
′ )𝒙𝑩[(𝒅𝑩  + 𝜇𝒅𝑩

′ )𝑩−𝟏𝑨𝒋 − (𝑑𝑗 +  𝜇𝑑𝑗
′)] 

The above expression simplifies to be a quadratic expression in 𝜇 and hence can be 

expressed as 

∆𝑗 = 𝛼𝑗 +  𝜇𝛽𝑗 +  𝜇2𝛾𝑗.                                                                    (4) 

 

Steps of the algorithm: 

 

(a) Solve the quadratic equations𝛼𝑗 +  𝜇𝛽𝑗 +  𝜇2𝛾𝑗 = 0for all 𝑗 ∈ 𝑁. Let all the 

roots be complex numbers and let all the quadratic expressions be positive i.e. 

𝛼𝑗 +  𝜇𝛽𝑗 +  𝜇2𝛾𝑗 > 0for all 𝑗 ∈ 𝑁.In this case the current solution is optimum 

over𝜔 ≤ 𝜇 ≤ 𝜑.Bu if𝛼𝑗 +  𝜇𝛽𝑗 +  𝜇2𝛾𝑗<0for any 𝑗 ∈ 𝑁then move to an 

adjacent basic feasible solution.  

(b) Solve the quadratic equations𝛼𝑗 +  𝜇𝛽𝑗 +  𝜇2𝛾𝑗= 0 for all ∈ 𝑁 . Mark the real 

values on a number line and find the interval (intervals) of 𝜇 when   ∆𝑗= 𝛼𝑗 +

 𝜇𝛽𝑗 + 𝜇2𝛾𝑗 ≥ 0. 

(c) Find an intersection set of all the intervals found in step (b) and let that interval 

be [𝜇 ,  𝜇 ]. 

(d) In this case𝒙𝟎 = ( 𝒙𝑩, 𝟎 ) solves the problem (1) for all 𝜇 in the interval 𝜇 ≤

𝜇 ≤ 𝜇 if all the quadratic expressions with complex roots are positive i.e. 𝛼𝑗 +

 𝜇𝛽𝑗 + 𝜇2𝛾𝑗 > 0  for all j’s with complex roots. If 𝛼𝑗 +  𝜇𝛽𝑗 +  𝜇2𝛾𝑗 < 0 for at 

least one non-basic vector then the problem has no solution over the interval 

𝜇 ≤ 𝜇 ≤ 𝜇. 

(e) Next, let vector 𝑨𝑗 to enter the basis that corresponds to  𝜇 or𝜇 and follow steps 

(a) through (d) to find another optimum solution for problem (1) along with 

new range of the parameter𝜇. 

(f) In case the intersection set of all the intervals found in step (c) is empty then go 

to another basic feasible solution by letting vector 𝑨𝒋 to enter the basis for 

which∆𝑗= 0. Follow steps (a) through (e).   

(g) Repeat steps (a) - (f) until the entire range 𝜔 ≤ 𝜇 ≤ 𝜑  of the parameter 𝜇has 

been examined.  
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4.Numerical Example 

Maximize Z = 
(0+ 𝜇) 𝑥1+(1+𝜇)𝑥2

(1+2𝜇)𝑥1+(1+3𝜇)𝑥2+2
 

 Subject to  

𝑥1 + 𝑥2 ≤ 4 

𝑥1 + 3𝑥2 ≤ 6(5)                         

𝑥1, 𝑥2 ≥ 0, 

 

First basic feasible solution can be read from table 1. 

 

    Table 1 

 

𝑑𝐵 𝑐𝐵 Basic 

variables 
𝐴1 𝐴2 𝐴3 𝐴4 b 

0 0 𝑥3 1 1 1 0 4 

0 0 𝑥4 1 3 0 1 6 

𝒙𝟎 = (0, 0, 4, 6)with,  Z = 
𝑧1

𝑧2
=

0

2
 . 

∆𝑗
′ 𝑠  associated with this basic feasible solution are: 

 ∆1 =[(2)(0−𝜇)]- [(0)]  = - 2𝜇 

∆2 = [ (2)(0 − 1 − 𝜇)]- [(0)]  = 2(−1 − 𝜇)]. 

The intersection interval for ∆1≥ 0 and for ∆2≥ 0 is(−∞, −1].  

Over this interval the condition,𝑫𝒙 > 0for all 𝑥 ∈ 𝑆, gets violated. Thus problem has 

no solution over the interval(−∞, −1]. We move to another basic feasible solution by 

letting 𝑨𝟐 to enter and𝑨𝟒to depart from the basis.  

Table 2 yields the new solution. 

 

                             Table 2 

 

𝑑𝐵 𝑐𝐵 Basic 

variables 
𝐴1 𝐴2 𝐴3 𝐴4 b 

0 0 𝑥3 2

3
 

0 1 
−

1

3
 

2 
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1+3𝜇 1+𝜇 𝑥2 1

3
 

1 0 1

3
 

2 

 

At this solution, 𝒙𝟎 = (0, 2, 2, 0),    Z = 
𝑧1

𝑧2
 = 

𝜇+1

3𝜇+2
 . 

∆𝑗
′ 𝑠 at this basic feasible solution are: 

 ∆1= [(3𝜇 + 2)(
1

3
  +

1

3
𝜇 − 𝜇)] −[(1+𝜇)( 

1

3
  +𝜇 − 1 − 2𝜇)] 

      = −𝜇2 +  
4

3
𝜇 +  

4

3
 

∆4 = [(3𝜇 + 2)(
1

3
  +

1

3
𝜇)] −[(1+𝜇)( 

1

3
  +𝜇)] =  

1

3
  +

1

3
𝜇 

 ∆1= 0 yields 𝜇 = 2,  −
2

3
; and the interval over which  ∆1≥ 0 is given 

by       [−
2

3
 ,2]. But for 𝜇 ≤ −

2 

3
the condition,  𝑫𝒙 > 0  for all 𝑥 ∈ 𝑆, gets violated, 

therefore, he interval over which  ∆1≥ 0 is given by (−
2

3
 , 2].∆4≥ 0is true for 𝜇 ≥ −1.  

Their intersection interval is (−
2

3
 , 2]. Thus 𝒙𝟎 = (0, 2, 2, 0) solves the problem for 

−
2

3
< 𝜇 ≤ 2.  

Next, 𝜇 = 2 makes ∆1 = 0. A new basic feasible solution is obtained by letting 𝑨𝟏 to 

enter and 𝑨𝟑 to depart from the basis. This solution is given by table 3. 

                             Table 3 

𝐷𝐵 𝐶𝐵 Basic 

variables 
𝐴1 𝐴2 𝐴3 𝐴4 b 

1 + 2𝜇 𝜇 𝑥1 1 0 3

2
 −

1

2
 

3 

1+3 𝜇 1+ 𝜇 𝑥2 0 1 
−

1

2
 

1

2
 

1 

At this solution, 𝒙𝟎 = (3, 1, 0, 0),    Z = 
𝑧1

𝑧2
 = 

4𝜇+1

9𝜇+6
 . 

∆𝑗
′ 𝑠  at this basic feasible solution are: 
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 ∆3= [(9𝜇 + 6)(
3

2
𝜇 −

1

2
−

𝜇

2
)] −[(4𝜇 + 1)( 

3

2
  + 3𝜇 −

1

2
−

3

2
𝜇)] 

      = 3 𝜇2 −  4 𝜇 − 4 

∆4= [(9𝜇 + 6)(  −
𝜇

2
+  

1

2
+

1

2
𝜇)] −[(4𝜇 + 1)(− 

1

2
− 𝜇 +

1

2
+

3

2
𝜇)] 

= −2 𝜇2 +  4 𝜇 + 3 

∆3= 0 yields 𝜇 = 2,  −
2

3
; and the interval over which  ∆3≥ 0 is given by 

(−∞,  , −
2

3
 ]∪ [2,∞). 

∆4= 0  gives  𝜇 = 2.5, −0.58 and the interval over which ∆4≥ 0 is given by 

[-0.58, 2.5].Their intersection interval is [2, 2.5]. Thus 𝒙𝟎 = (3, 1, 0, 0) solves the 

problem for 2 ≤  𝜇 ≤ 2.5.  

Next, 𝜇 =  2.5 makes ∆4 = 0. A new basic feasible solution is obtained by letting 𝑨𝟒to 

enter and 𝑨𝟐 to depart from the basis. Table 4 yields the new solution 

   Table 4 

𝐷𝐵 𝐶𝐵 Basic 

variables 
𝐴1 𝐴2 𝐴3 𝐴4 b 

1 + 2𝜇 𝜇 𝑥1 1 1 1 0 4 

    0   0 𝑥4 0 2 −1 1 2 

 

At this solution, 𝒙𝟎 = (4, 0, 0,2),    Z = 
𝑧1

𝑧2
 = = 

2𝜇

4𝜇+3
 . 

∆𝑗
′ 𝑠 at this  basic feasible solution are: 

 ∆2 = [(4𝜇 + 3)(𝜇 − 1 − 𝜇)] −[(2𝜇)(1  + 2𝜇 − 1 − 3𝜇)] 

      = 2 𝜇2 −  4 𝜇 − 3 

 ∆3= [(4𝜇 + 3)(𝜇 )]−[(2𝜇)(1 + 2𝜇)= 𝜇 

∆2= 0 gives  𝜇 = 2.5, −0.58 and the interval over which ∆2≥ 0 is given by 
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 (−∞, -0.58] ∪ [ 2.5, ∞ ). The intersection interval of 𝜇 for which ∆2 and∆3are ≥ 0 is 

given by [ 2.5, ∞ ). 

Thus 𝒙𝟎 = (4, 0, 0, 2) solves the problem for 2 .5 ≤  𝜇 <  ∞. 

 5.   Conclusion 

          This work completes an exhaustive study of a linear fractional programming 

problem when the parameter appears in the objective function of the problem. 
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