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PARAMETRIC LINEAR FRACTIONAL PROGRAMMING

Abstract. This paper considers a mathematical programming problem whose
objective function is a linear fractional. The constraint set consists of linear
inequalities with non-negative requirements on the variables. A parameter is
introduced in the objective function of the problem. Optimum solutions are obtained
for the various intervals of the parameter. A numerical example illustrates the steps of
the proposed algorithm.
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1. Introduction

Development of parametric optimization tools are essential in the process design as
they can offer significant analytical results to problems related to uncertainty objective
optimization. In fact, the solution of the pertinent parametric optimization problems is
the complete and exact solution from the mathematical point of view.

Although sensitivity analysis and parametric optimization problems have been
addressed successfully in the linear programming case (Gal, 1979) they are still the
subject of ongoing research for non-linear mathematical programming problems.(Gass,
1985) has very lucidly dealt with the parametric optimization in the case of linear
programming problems;(Murty, 1980) has studied the computational complexity of
parametric linear programming problems.( Singh et.al., 2011) have considered a
multiparametric ~ problem  for a  generalized transportation  problem.
(Mordukhorichet.al., 2009) have studied sub-gradients of marginal functions in
parametric mathematical programming.(Aggarwal, 1968) has studied a linear
fractional programming when the parameter appears in a very special structured
objective function of the problem.

This paper addresses the behavior of solutions to a linear fractional programming
problem when the coefficients of the objective function, in its most general form, are
allowed to vary; i.e., for what ranges of coefficient values will the deterministic
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solution remain optimal? In general, a parametric linear fractional programming
problem can be stated as:

let w < u < @, where w may be an arbitrary small, but finite number and ¢ may be an
arbitrary, algebraically large, but finite number. For each u in this interval, find a
vector X = ( x4, x5, ..., X,) Which maximizes

72 27:1 [c]-+ptc']-] xj
Yjoqldj+ud’jlx;
subject to
Z}Llai}-xj Sbl i=1,...,m (1)
XJZO j=1,...,n
where ¢;, ¢; d;, d; ,a;;, and b; are given constants.
In matrix form above is same as:

_leruclx
z T ld+pd' ] x
subject to

XES.

Here S=(Ax < b,x > 0); A = (44,A4,.,..A,) ismby n matrix;c, ¢, d, d are n-
component row vectors, x and b are n and m components column vectors respectively.

(Aggarwal, 1968) has studied three special cases of problem (1). In case one the
objective function of the problem is:

Yis [cj+uc’jlxj
Yioy ldj+uc]x;’

in the second case objective function is:

Yioy [cjtucjlx;
n ]
Zj:1djxj

the objective function in the last case is:
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Xj=167%
Z;’l:1[dj + .“d'j] Xj

(Chadha, 1971) has studied the above three cases in a linear fractional programming
problem when two parameters appear in the objective function. The intention here is to
study the parametric linear fractional programming in its most general form as in (1).
Preliminaries are given in section 2; the algorithm, in detail, is presented in section 3;
the last section of the paper contains a numerical example. This example illustrates all
the steps of the proposed algorithm..

2. Preliminaries
A linear fractional programming problem is given by
Maximize F(x) = CDLx )

subject to
X € S.

Here S = ( Ax < b,x>0); A= (A4,43,..4,) is m by n matrix; C,D are n-
component row vectors, x and b are n and m components column vectors respectively.

Under the assumptions that the
(i) set Sis regular, i.e. non-empty and bounded,
(i) Dx > Ofor all xin € S,
and (iii) the problem is non-degenerate,

it has been proved by (Martos, 1964)and (Swarup, 1965) that a basic feasible solution,
x° = (xp, 0) solves the problem (2) if

A= Z,[CpPj —¢;| — Z;[DpPj —d;]120 ; j=1,2,..,n (3)
Here c;, and d;are the jth-elements of the vectors € and D respectively; Cg, andD gare

the sub-vectors of C, and D respectively. Corresponding to the basis matrixBofA; P; =
B_lA]-,xB = B_lb, ZZ = DBxB, and Zl = CBxB.

3. Description of the algorithm
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We start with a basic feasible solution, x® = ( xg,0) for problem (1),withA = [B, N].
Next we calculate A’;s associated with this basic feasible solution for alljinN.

A; = (dB + ,ud,})xB [(CB + yc};)B_lA]- — (cj + ycj')] —
(CB + ﬂCB)xB[(dB + ,leB)B_1A] - (d] + yd])]

The above expression simplifies to be a quadratic expression in u and hence can be
expressed as

()

(b)

(©
(d)

(€)

()

(9)

Steps of the algorithm:

Solve the quadratic equationsa; + uf; + ,uzyj = QOfor all j € N. Let all the
roots be complex numbers and let all the quadratic expressions be positive i.e.
aj+ up; + ,uzyj > Ofor all j € N.In this case the current solution is optimum
overw < u < @.Bu ifa; + pp; + p*y;<Ofor any j € Nthen move to an
adjacent basic feasible solution.

Solve the quadratic equationsa; + up; + yzyj= 0 for all € N . Mark the real
values on a number line and find the interval (intervals) of u when A;=a; +
up; + w?y; = 0.

Find an intersection set of all the intervals found in step (b) and let that interval
be [u, u].

In this casex® = (xp,0) solves the problem (1) for all u in the interval u <
p < u if all the quadratic expressions with complex roots are positive i.e. a; +
1B; + uy; >0 for all j’s with complex roots. If a; + up; + p?y; < 0 for at
least one non-basic vector then the problem has no solution over the interval
gSusﬁ

Next, let vector 4; to enter the basis that corresponds to p or and follow steps
(@) through (d) to find another optimum solution for problem (1) along with
new range of the parameterpu.

In case the intersection set of all the intervals found in step (c) is empty then go
to another basic feasible solution by letting vector A; to enter the basis for
whichA;= 0. Follow steps (a) through (e).

Repeat steps (a) - (f) until the entire range w < u < ¢ of the parameter phas
been examined.
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4.Numerical Example

(0+ p) X1 +(1+u)x;,
(1+2p)x1+(1+3w)x,+2

Maximize Z =

Subject to

X1 + Xy < 4
x1 + 3x, < 6(5)
X1, %2 = 0,

First basic feasible solution can be read from table 1.

Table 1

dg | cp | Basic Ay | Ay | A3 | A, | D
variables

0 |0 X3 111 (1 |0 |4

0 10 Xy 1 |3 |0 |1 |6
x° = (0,0,4,6)with, Z = i_lzg

2

A]'-s associated with this basic feasible solution are:
Ay =[Q)(0-w]- [(0)] =-2u
A, =[(2)(0—-1-w]-[(0)] =2(-1-w]
The intersection interval for A;> 0 and for A,> 0 is(—o, —1].

Over this interval the condition,Dx > Ofor all x € S, gets violated. Thus problem has
no solution over the interval(—oo, —1]. We move to another basic feasible solution by
letting A, to enter andA4to depart from the basis.

Table 2 yields the new solution.

Table 2
dg cg | Basic Ay | Ay | Az | Ay | D
variables
0 0 X3 E 0 |1 _1 2
3 3
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1+3u | 1+u X, 11110 12
3 3
At this solution, x® = (0,2,2,0), zZ=2=#1
zZ, 3u+2

A}s at this basic feasible solution are:
8= [B+2)G +5u =] ~[A+0)(5 *+n =1~ 20)]
—_,24 % 4
ST SRt
1 1 1 1 1
Ay =[Br+2)G +;w] —[A+1(5 +W] = 5 +zu

A= 0 yields pu = 2, —g; and the interval over which A;> 0 is given
by [—% ,2]. But for u < —thhe condition, Dx > 0 for all x € S, gets violated,

therefore, he interval over which A;= 0 is given by (—% , 2).A,= Ois true for u > —1.

Their intersection interval is (—% , 2]. Thus x° = (0,2,2,0) solves the problem for
—g <u<s2

Next, 4 = 2 makes A; = 0. A new basic feasible solution is obtained by letting 44 to
enter and A3 to depart from the basis. This solution is given by table 3.

Table 3
Dg Cp | Basic A | A, | A3 | A, | b
variables
1+2p| p X4 1 1o |3] 13
2
1+3u | 1+u Xy 0 1 _1 1 1
2| 2
Z, A4u+1
At this solution, x° = (3,1,0,0), Z=-2=-E
Z; 9u+6

A]'-s at this basic feasible solution are:
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A= [Qu+6)CH—5 =D —[(4u+ 1) +3u—3 2]
=3pu— 4p—4
8= O+ 6)( =5+ S+5w] —[(u + 1)(= 5— 1 +3+30)]
=2p*+ 4p+3

Az;=0vyields u =2, —g; and the interval over which A;> 0 is given by

2
(—oo, ) _E]U [21 OO)'
Ay= 0 gives u = 2.5,—0.58 and the interval over which A,> 0 is given by

[-0.58, 2.5].Their intersection interval is [2,2.5]. Thus x° = (3,1,0,0) solves the
problemfor2 < u < 2.5.

Next, u = 2.5 makes A, = 0. A new basic feasible solution is obtained by letting A4to
enter and A, to depart from the basis. Table 4 yields the new solution

Table 4

Dg Cp | Basic Ay | Ay | A3 | A, | D
variables
14+2u| u Xq 1 |1 |1 0 |4

0 | 0] x |0 2 [=1]1 [2

At this solution, x° = (4,0,0,2), Z=2==2
Z; du+3

A]'-s at this basic feasible solution are:
Ay =[(Gp+3)p—1—-w] -[EwQA +2u—1-3uw)]
=2u*—4u-3
Az=[(4p + 3)(u)]-[Cw)A + 21)=p

A,= 0gives u = 2.5,—0.58 and the interval over which A,> 0 is given by
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(—,-0.58] U [ 2.5, «). The intersection interval of u for which A, andAzare > 0 is
given by [ 2.5, ©).

Thus x° = (4,0,0, 2) solves the problem for 2.5 < p < o,
5. Conclusion

This work completes an exhaustive study of a linear fractional programming
problem when the parameter appears in the objective function of the problem.
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